Functional map of TEA transport activity in isolated rabbit renal proximal tubules.

نویسندگان

  • Stephen H Wright
  • Kristen K Evans
  • Xiaohong Zhang
  • Nathan J Cherrington
  • Daniel S Sitar
  • William H Dantzler
چکیده

The organic cation (OC) transporters OCT1 and OCT2 are suspected of mediating substrate entry from the blood into proximal tubule cells as the first step in renal secretion of OCs. We examined the contribution of each process in different rabbit renal proximal tubule (RPT) segments, taking advantage of the fact that rabbit orthologs of OCT1 and OCT2 can be distinguished by the high affinity of the former for tyramine (TYR) and of the latter for cimetidine (CIM). We verified that TEA uptake, for which both transporters share a similar affinity, is relatively constant in all three segments (apparent inhibitory constant of 33, 74, and 30 microM and maximal rate of mediated TEA uptake of 0.8, 1.0, and 1.2 pmol x mm(-1) x min(-1) in S1, S2, and S3, respectively). In the S1 segment, TYR was a more effective inhibitor of TEA uptake than CIM (IC50 values of 39 and 328 microM, respectively), implicating OCT1 as the predominant pathway for TEA transport. The opposite profiles were noted in the S2 segment (IC50 values of 302 and 20 microM for TYR and CIM, respectively) and S3 segment (IC50 values of 2,900 and 54 microM for TYR and CIM, respectively), suggesting that OCT2 is the predominant TEA transporter in the later portion of RPT. TEA sufficient to saturate OCT1 and OCT2 blocked only 37% of mediated amantadine transport in the S2 segment, confirming the functional presence of at least one additional OC transporter (perhaps OCT3). These data indicate that renal OC transport involves the concerted activity of a suite of transport processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules.

In renal proximal tubules, the organic cation transporters rOCT1 and rOCT2 are supposed to mediate the first step in organic cation secretion. We investigated whether previously described differences in amantadine and tetraethylammonium (TEA) uptake into isolated renal proximal tubules could be explained by differences in their transport by rOCT1 and rOCT2. By expressing rOCT1 and rOCT2 in Xeno...

متن کامل

Molecular cloning of rabbit organic cation transporter rbOCT2 and functional comparisons with rbOCT1.

Multiple organic cation transporters (OCTs) are present in rabbit kidney and may play different functional roles. We cloned rabbit OCT2 (rbOCT2) and compared its function with that of rabbit OCT1 (rbOCT1). In transiently transfected COS-7 cells, rbOCT1 and rbOCT2 mediated uptake of [3H]tetraethylammonium (TEA) with K(t) values of 188 and 125 microM, respectively. n-Tetraalkylammonium compounds ...

متن کامل

Sex differences in the mRNA, protein, and functional expression of organic anion transporter (Oat) 1, Oat3, and organic cation transporter (Oct) 2 in rabbit renal proximal tubules.

Sex differences in transport of the organic anion (OA) substrate p-aminohippurate (PAH) and the organic cation (OC) substrate tetraethylammonium (TEA) have been recognized for some time. In the rat kidney, androgens up-regulate and estrogens down-regulate PAH and TEA transport, which correlate with similar changes in mRNA and protein expression for the renal basolateral membrane transporters or...

متن کامل

Functional mapping of rbOCT1 and rbOCT2 activity in the S2 segment of rabbit proximal tubule.

A strategy was developed to determine the distribution of activity mediated by the organic cation (OC) transporters OCT1 and OCT2 in rabbit renal proximal tubule (RPT). Both transporters displayed similar affinities for tetraethylammonium (TEA; in CHO-K1 cells, TEA concentrations that resulted in half-maximal transport were 19.9 and 34.5 microM for OCT1 and OCT2, respectively). Similarly, some ...

متن کامل

Tetraethylammonium and amantadine identify distinct organic cation transporters in rat renal cortical proximal and distal tubules.

Tetraethylammonium (TEA) and amantadine are two organic cations that are secreted by the kidney. It appears that each cation may characterize distinct renal tubule organic cation transport pathways. To test this hypothesis, we investigated the renal proximal and distal tubule energy-dependent transport properties of TEA and amantadine. Isolated tubules were incubated at 25 degrees C in bicarbon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 287 3  شماره 

صفحات  -

تاریخ انتشار 2004